奈米國家型科技計畫研究重要成果

奈米國家型科技計畫研究重要成果

1.計畫背景:
計畫主持人及共同主持人(PI and Co-PIs):

 

類 別 姓名 服務機構/系所 職稱 在本研究計畫內擔任之具體 工作性質、項目及範圍
總主持人 鄭友仁 國立中正大學
機械工程系
教授 以添加奈米顆粒增進磨潤性能及界 面接觸之研究
共同主持人 鄭友仁 國立中正大學
機械工程系
教授 分項計畫(一) 「奈米磨潤與奈米顆粒之物理機械 性質」
共同主持人 陳俊杉 國立台灣大學
土木工程系
教授
共同主持人 王崇人 國立中正大學
化學暨生物化學系
教授 分項計畫(二) 「奈米顆粒添加劑合成潤滑液磨 潤」
共同主持人 黃贛麟 工業技術研究院
南分院/奈米粉體 與薄膜科技中心
研究 員
共同主持人 洪昭南 國立成功大學
化學工程系
教授 分項計畫(三)
「奈米固體潤滑薄膜技術及接觸界 面磨潤機制之研究」

 

Staff Type

Name

Institution/ Department

Position

Role in Project

PI

Yeau-Ren Jeng

National Chung Cheng University
/ Mechanical Engineering

Professor

Study on the Key
Technology for Enhancing Tribological Properties and Interfacial Performances Using Nanoparticles

Co-PI

Yeau-Ren Jeng

National Chung Cheng University
/ Mechanical Engineering

Professor

Subproject (I): Research on the
Nanomechanical Properties and Nanotribological Mechanisms for Nanoparticles

Co-PI

Jyun-shan

Chen

National Taiwan University
/ Civil Engineering

Professor

Co-PI

Churng-R en Chris Wang

National Chung Cheng University
/Chemistry and Biochemistry

Professor

Subproject (II): Study of Interfacial
Behaviors and Tribological Performance for

Co-PI

Gan-Lin Hwang

Industrial Technology Research Institute (ITRI South)

Researcher

 

Nanoparticle-containing Lubricants

Co-PI

Chau-Nan Hong

National Cheng Kung University
/ Chemical Engineering

Professor

Subproject (III):
Investigation into Contact Behaviors and Lubricating Properties of
Nanoparticle-containing Thin Films

 

研究題目(Project Title): 以添加奈米顆粒增進磨潤性能及界面接觸之研究
Study on the Key Technology for Enhancing Tribological Properties and Interfacial Performances Using Nanoparticles

主持人執行機構(Organization): 國立中正大學機械系
Department of Mechanical Engineering, National Chung Cheng University

全程計畫執行期限(Project period):
自民國 101  08  01  日起至民國 104  07  31  日,共

 

分年經費(Budget per year): 

From August 1, 2012 to July 31, 2015

第一年經費:NT$ 8,000,000
第二年經費:NT$ 8,000,000
第三年經費:NT$ 8,000,000
Budget for the first year: NT$ 8,000,000
Budget for the second year: NT$ 8,000,000
Budget for the third year: NT$ 8,000,000

 

2.計畫目標:

潤滑技術是改善機械系統磨損和延長摩擦元件壽命的重要手段。本三年期學研 計畫為『以添加奈米顆粒增進磨潤性能及界面接觸之研究』,主要在探索運用奈米顆粒添加劑之特性建立降低摩擦及磨耗之潤滑劑改良技術與強化材料表面之奈米鍍膜,達到以奈米機制操控方式達到增進材料表面機械強度及接觸界面磨潤行為之目標。 本研究將以奈米碳球、金屬合成奈米碳球、奈米碳管、奈米鑽石及奈米金屬粒子等 奈米顆粒為潤滑油添加劑,對於該奈米顆粒添加劑及所合成之潤滑油進行物理機械 性質及磨潤特性進行研究分析,並探討奈米顆粒添加劑之形狀、大小及擴散效應對潤滑效果之影響。在奈米鍍膜技術方面,本研究也將利用射頻磁控濺鍍法調控氬/乙 炔含量模式來製備高材料強度之奈米類鑽碳複合薄膜。在奈米級尺度下,藉由奈米 壓痕、奈米磨耗、奈米刮痕量測技術分析奈米顆粒添加劑與奈米薄膜之表面物理機 械性質及界面接觸行為;並延伸到介觀及巨觀尺度下之多尺度磨潤標竿測試技術 (Bench tests),以模擬潤滑液於各種負荷、不同幾何型態,與滑動、滾動之運動模式 下之磨耗特性及潤滑效能;最終結合產業用原型測試系統(Field tests)完成實用性及可 靠性分析。本研究結合即時壓痕影像系統,探討奈米顆粒與奈米薄膜在原子尺度下受外力時所產生之結構破壞機制,且藉由奈米力學闡釋微觀表面接觸行為,以多尺 度的觀點詮釋摩擦力與磨耗的起源,為抗磨耗節能技術提供嶄新的契機。本團隊也 與工業技術研究院南分院的奈米粉體與薄膜科技中心(Nano Materials Center of Industrial Technology Research Institute, ITRT)在奈米顆粒添加劑之潤滑油研究領域 有長期合作關係,所以兼具學理分析能力及自主研發能量,初期成果更具產業研發 潛力及實用價值,透過本學研計畫之相互整合,可具體達成本以奈米顆粒之特性達 到強化材料表面及降低接觸界面磨耗之目的外,並大幅提昇國內奈米工程技術能力 與提供相關節能產業前瞻技術。本團隊也與國外頂尖研究團隊(Prof. Robert W. Carpick of University of Pennsylvania)建立國際合作,共同致力於原子級顯微量測技術 之研發。Carpick教授的研究成果經常被表於Nature及Science等國際知名期刊,本研 究團隊將結合國際合作優勢互補之策略,以提升我國奈米科技產業之廣度與深度, 並推動計畫成果國際化及建立國際合作平台。本研究所開發之油基-潤滑液將實際應 用在光陽 (KYMCO)與摩特動力(PGO)兩家公司的動力機測試系統;水基-乳化劑將 應用在與中鋼(CSC)合作建製之軋延原型系統上,以加速達到實用化階段之目的。

Moving mechanical systems rely on effective lubrication for efficient, long-lasting operations. Recent development of nanotechnology provides a unique opportunity to microscopically manipulate various nano-mechanisms to achieve desirable tribological performances and good interfacial behaviors. The proposed study aims to develop nanoparticle-containing lubricants for better tribological behavior and exploit the manipulation of nanoparticle conditions to build a thin-film coating with enhanced antifriction and toughness properties. Adding nanoparticles to a lubricant can enhance load-carrying capacity to withstand the contact pressure and thereby dramatically increasing antifriction properties and load-bearing capacities. The additive nanoparticles studied will include fullerenes, metal-containing fullerenes and nanodiamonds. The major factors affecting tribological properties of nanoparticle-containing lubricants such as particle-shape, size, dispersion capacity will be investigated. In the study of thin-film coatings, the organic coatings will be prepared by using the sputtering-assisted plasma chemical vapor deposition with argon/acetylene gas concentration to produce the metal-containing diamond-like carbon such as Ti-DLC nanocomposite films. The manipulation of nanoparticles to establish smart coating architectures for better toughness and smoother surface roughness is able to enhance tribological behavior and interfacial performance.
Nanomechanical properties and nanotribological performances for nanoparticles used as lubricant additives and thin-film coatings will be characterized by employing nanoindentation, nanowear, and nanoscratch test using a nanoindenter. An in-situ pico-indentation in a transmission electron microscope will be utilized to relate the force-displacement function to the microstructure changes of a thin film and observed a movement of individual nanoparticles during various interfacial conditions. Bench tests will be employed using tribometer with the two-roller configuration in various rolling, sliding, and exfoliation regimes to investigate and evaluate the tribological properties and lubricating performances of nanoparticle-containing lubricants. Moreover, wear surfaces also will be analyzed by scanning electron microscopy and energy dispersive spectrometry. Computational algorithms in nano-mechanics including molecular dynamics simulation and energy minimization that mix atomistic and continuum methods will be utilized to provide insights of these test results. Field testes will be conducted incorporation with several companies for industrial applications. One highlight of this demonstration will manifest achieving the improved properties with desired steel surface through using water-based lubricants containing nanoparticles additives during rolling process using the proposed approach for the rolling testing with China Steel Corporation.
Engine tests will be conducted with a couple of motor engine companies for oil-based lubrications with nanoparticles as additives. The underlying mechanisms of controlling size, shape, orientation, and density of nanoparticles for thin films, water- and oil-based lubrications will be revealed and thus making possible development and manufacturing optimization of tailor-mad and functional-materials with significantly enhanced lubrication properties. The team of the proposed program consists of distinguished researchers from respective areas. The team numbers has long term collaborative relationship. We have already worked with Nano Materials Center of Industrial Technology Research Institute (ITRT) several years on particle added oil-based lubricants. With extrusive background and promising initial results, the proposed research will deliver substantial breakthrough with industrial applications. International collaboration with Prof. Robert W. Carpick of University of Pennsylvania will further enhance our capability in the atomic scale tribological characterizations.

 

3.參與計畫單位及人數:

 

姓名

單位

職稱

鄭友仁

國立中正大學
機械工程系

教授

陳俊杉

國立台灣大學
土木工程系

教授

王崇人

國立中正大學
化學暨生物化學系

教授

黃贛麟

工業技術研究院
南分院/奈米粉體與薄 膜科技中心

研究員

洪昭南

國立成功大學
化學工程系

教授

 

Name

Institution/ Department

Position

Yeau-Ren Jeng

National Chung Cheng University/ Mechanical Engineering

Professor

Yeau-Ren Jeng

National Chung Cheng University/ Mechanical Engineering

Professor

Jyun-shan Chen

National Taiwan University/ Civil Engineering

Professor

Churng-Re Wang

National Chung Cheng University/Chemistry and Biochemistry

Professor

Gan-Lin Hwang

Industrial Technology Research Institute (ITRI South)

Researcher

 

Chau-Nan Hong

National Cheng Kung University/ Chemical Engineering

Professor

 

4.請列出最具代表性之論文或專利至多 6 篇:

Journal

  • Yeau-RenJeng, P. C. Tsai, K. T. Wu, Y. M. Wang, F. C. N. Hong, S. M. Huang,
    K. C. Chen, 2013, “Effect of Feed Gas Composition Effects on the Nanotribological Properties of Diamond-like Carbon Films,” Thin Solid Films, Vol.529, pp. 301-305 (SCI).
  • Yeau-RenJeng, P. C. Tsai, S. H. Chiang, 2013, “Effects of grain size and orientation on mechanical and tribological characterizations of nanocrystalline nickel films,” Wear, Vol. 303, pp. 262-268 (SCI).
  • Yeau-RenJeng, T. T. Lin, S. R. Peng, J. S. Huang, D. B. Shieh, 2013“Topical Lasing Enhances Enamel Fluoride uptake and Tribological Properties”, to be published in Journal of Dental Research.
  • P. C. Tsai, Yeau-RenJeng, 2013, “Experimental and numerical investigation into the effect of carbon nanotube buckling on the reinforcement of CNT/Cu composites,” Composites Science and Technology, Vol.79, pp. 28-34 (SCI).
  • Yeau-RenJeng, S. R. Peng, 2012, “Atomic simulation of contact behavior during sliding inception of an asperity,” Wear, Vol. 276, pp. 70 (SCI).
  • Yeau-RenJeng, T. T. Lin, H. M. Hsu, H. J. Chang, D. B. Shieh, 2011, “ Human Enamel Rod Presents Anisotropic Nanotribological Properties,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, pp. 515 (SCI)

Patent

  • Yeau-RenJeng, C. M. Tan, 2012, “Apparatus and Method of Hardness Enhancing for Nanoimprint Mold,” Taiwan patent :I383266

  • J. H. Horng, C.C. Wei, Yeau-RenJeng, Y. T. Tsai, 2012, “Fabrication for anti-reflecting structured thin film,” Taiwan patent 099146868

     

     

5.計畫已獲得之主要成就與成果:

本計畫主要在探索運用奈米顆粒添加劑之特性建立低摩擦及抗磨耗之技術,以達到奈米機制操控方式增進接觸界面磨潤行為之目標。在奈米顆粒添加劑方面,本 團隊以奈米力學探討二硫化鉬(MoS2)奈米顆粒之磨潤機制,發現其尺寸效應明顯影 響表面磨潤行為 (圖 1~2)。本團隊也利用奈米壓痕即時(In-Situ)影像系統探討奈米碳管受力時之結構破壞及物理機械性質,發現碳管之挫曲(Buckling)行為能有效釋放應 力。碳管內之石墨層在無缺陷條件下,具有完全回復性(Full recoverability)(圖 3~4)。 在油基-潤滑液方面,本團隊以碳奈米膠囊(CNC)混合至礦物基礎潤滑油,探討 不同濃度 CNC 對接觸界面之磨潤性能影響,發現添加 CNC 之潤滑油有較低摩擦係 數及較少表面磨耗,主要是 CNC 具有填補效應,能改善接觸界面之磨潤特性(圖 5~6)。 在水基-液態液方面,利用奈米銀分散於水基非離子型界面活性劑系統為添加劑主體 (圖 7),並透過混雜次微米球形二氧化矽聚合物技術,成功獲得較大尺度及較佳幾何 形狀之銀奈米球(圖 8),未來將其延伸到磨潤標竿測試 (Bench tests),以模擬潤滑液 於各種運動模式下磨耗特性及潤滑效能。在固態潤滑薄膜方面,本團隊已成功開發一種藉由調控 H2/CH4 參數之鍍膜技術,以控制類鑽碳膜(DLC)中 SP2/SP3 之組成比例, 達到具有 SP3 之高硬度,同時也有 SP2 之潤滑效果 (圖 9~10)。

Recent development of nanotechnology provides a unique opportunity to microscopically manipulate various mechanisms to achieve these desirable tribological performances and good interfacial behaviors. Hereby proposed is a three-year integrated project entitled “Study on the key technology for enhancing tribological properties and interfacial performances using nanoparticles,” aimed at exploring nano-scale mechanisms to produce materials with desired tribological behaviors and long-lasting operations. The proposed study conducted theoretical modeling and in-situ experimental testing to investigate nano-scale mechanisms related to material physicomechanical property and interfacial performance. With regard to the nanomechanical properties of additive nanoparticles, the tribological properties of multi-walled MoS2 nanoparticle is investigated using molecular dynamics (MD) simulations and structural analyses and is compared with that of single-walled nanoparticle. It is shown that the teibological properties of MoS2 nanoparticle are sensitive to the contact angles (Figs.1~2). For carbon nanotubes (CNTs), the proposed research has utilized various nano-mechanics computational approaches and in-situ experimental nanoindentation to study buckling instabilities and full recoverabilities of CNTs. In additional, our in-situ observations reveal a significant shell-to-Euler phase transformation in the buckling response of the CNT, which is compared well with our previous simulations (Appl. Phys. Lett. Vol.90 pp.161913) (Figs.3~4). For oil-based lubricants containing carbon nanocapsules (CNC), our results show that the friction coefficient of oil-based lubricants increases with increasing CNC content, where can be attributed to the fill-up effect due to highly energetic movements between contact interfaces (Figs.5~6). Moreover, two water-based lubricants have been developed in this project. High concentration silver nanoparticles suspended in a water-based medium based on the non-ionic surfactant system with minor addition of several thickening ingredients. It specifies the concentration up to 5 wt% and the nanoparticle sizes of less than 10 nm. In addition, suspended composite material system containing sub-micron silica particles have been successfully capped with nanometer scaled silver nanoparticles. In further work, bench tests will be conducted with a tribometer through the two-roller configuration in various rolling, sliding, and exfoliation regimes to investigate and evaluate the tribological properties and lubricating performances of these two water-based lubricants (Figs.7~8). In the areas of thin-film coatings, a series of experimental nanoindentation, nanowear and nanoscratch tests was conducted to investigate the relationship between the nanotribological characteristics of diamond-like carbon (DLC) and feed gas composition used for the deposition. The result also indicates that the hydrogen content in the source gas has a significant influence upon the sp2/sp3 ratio and hydrogen-to-carbon ratio in DLC films. Our result also reveals that a significant relationship between the hydrogen content and the nanotribological characterizations of the DLC films, namely lower hydrogen-to-carbon ratio leads to higher hardness, elastic modulus, friction coefficient, and lower wear depth (Figs.9~10).

 

6.上述重大研究突破,與國際上類似領域之比較:

本計畫主要在探索利用奈米顆粒添加劑之特性建立低摩擦及抗磨耗之潤滑劑改 良技術與強化材料表面之奈米鍍膜,以達到低磨耗、高潤滑節能材料的終極目標。 在奈米材料添加劑方面,以分子動力學結合原子與連續體理論的奈米力學探討奈米 碳管之物理機械行為。碳管之挫曲變形在提昇材料強度及奈米複合薄膜強化改質上 是最複雜也是最重要。本研究利用奈米壓痕即時影像系統真實呈現碳管挫曲破壞行為,並詮釋碳管在不同固定邊界條件下之壓縮挫曲行為及軟化機制。透過奈米力學 分析原子位移的情形與結構錯位機制,成功地解釋碳管在無缺陷條件下,能具有完 全回復性。此突破性成果在國際會議發表時引起廣大迴響。美國賓州大學 Robert W. Carpick 教授及新加坡大學均十分肯本團隊在奈米碳管之機械性質研究領域的貢獻, 並與本實驗室進行合作研究。其成果也受到美國空軍研究中心(AFSOR)及美國國科 會重視,更獲得資助領導一個跨國團隊進行奈米科技研發計畫。在奈米級磨潤與界 面接觸行為方面,我們所建立的奈米力學之最小能量計算法,分析單一奈米粗糙峰 的變形機制與側向接觸面積成長機制,由微觀角度成功詮釋連體力學理論分析與實 驗結果。此研究成果為改善元件之磨潤性能與奈米磨潤之發展提供重要的理論基礎。


It is an ancient and constant pursuit to seek for materials with long-lasting operations and better tribological behaviors. Especially with the rising energy-saving concern, it is in imminent need to build a durable system with low friction and wear, yet effective lubrication using materials with desirable tribological properties.The fundamental understanding of nano-scale mechanisms for the efficient development of material with desirable tribological performance and good interfacial behavior will be demonstrated for the industry in the business of rolling processes, engine tests, and surface coatings. The proposed research will conduct theoretical modeling and experimental testing to investigate nano-scale mechanisms related to nanomechanical properties and nanotribological performances. Various computational algorithms in nano-mechanics including energy minimization, molecular dynamics and clustered atomistic-continuum mechanics that mix atomistic and continuum methods to cement the link between different the length and time scales will be developed. A multi-scale method that combine atomistic and continuum methods will be developed to offer the possibility to link two distinct length and time scales and implemented to carry out calculation of material properties that cannot be achieved by direct atomistic calculations alone. The proposed research has utilized various nano-mechanics computational approaches and in-situ experimental nanoindentation to study buckling instabilities and full recoverabilities of CNTs. Remarkably, the experimental relationships between the buckling characterizations and the probable boundary conditions have been first deduced so far. In additional, our in-situ observations reveal a significant shell-to-Euler phase transformation in the buckling response of the CNT, which is compared well with the simulations of Duan et al. (Nano Lett. Vol.7 pp. 143). Concurrently, the work of Carpick et al. (Nano Lett. Vol. 7 pp.1149) also shows that mechanical instabilities of individual multiwalled CNT under cyclic axial compression, but no non-axial stresses (i.e. lateral forces) were considered. Thereby, the study by Carpick et al. further indicates that our group is the leader in the study of buckling behaviors.

In the areas of the interfacial behavior of materials, our study shows that the onset of lateral junction growth in the nanometer regime is primarily the result of the slips of atoms within the asperity, which causes new asperity atoms come into contact with the flat. Since the plastic deformation of crystalline solids is known to be the result of dislocations, our simulation results substantiate the assertion of Tabor (Proc. R. Soc. London, Ser. A Vol. pp. 378, 1959) that junction growth is essentially a plastic deformation process. Our simulation results provide a fundamental elucidation of the lateral junction growth phenomenon observed at the microscale. Through this proposed research, we have employed the theoretical and practical research forward for a deeper understanding on the material strength and interfacial performance so that a low energy consumption and durable system can be achieved to meet the compelling energy saving trend.


7.評估主要成果之價值與貢獻度:

本計畫已建構一套分子動力學結合原子及連續體理論之運算方法,透過即時影 像技術,完整分析奈米機制及界面磨潤特性。其可解決分子動力學時間步階之瓶頸, 降低實驗次數及成本。其成果已獲得中華民國與美國專利,並發表於國際知名期刊, 可見其原創性與實用性。最終,本計畫所發展水基-潤滑液已實際應用於與中鋼公司 合作建製之軋延原型系統上,透過調控乳化劑潤滑特性,增進鋼材表面強度,達到 客製化鋼材的目標。油基-潤滑液將應用於光陽工業 (KYMCO)、摩特動力 (PGO)之引 擎運轉摩潤測試。添加奈米顆粒鍍層技術也成功應用於中國砂輪,上銀科技,馗鼎 奈米科技,以提昇國內奈米技術學理基礎與研發能力,並提供以奈米機制設計低摩 擦、抗磨耗材料之前瞻性思維。


The proposed project has conduct theoretical modeling and in-situ experimental testing to investigate nano-scale mechanisms related to tribological behavior and interfacial performance for materials. Specifically, physicomechanical properties of materials on length scale spanning from the atomistic to the macroscopic will be investigated. Innovative ideas based on the insights gained from this investigation of nano-scale mechanisms have also been developed and demonstrated. In particular, field testes will be conducted incorporation with several companies for industrial applications. One highlight of this demonstration will manifest achieving the improved properties with desired steel surface through using water-based lubricants containing nanoparticles additives during rolling process using the proposed approach for the rolling testing with China Steel Corporation. Engine tests will be conducted with a couple of motor engine companies (KYMCO and PGO Co., Ltd) for oil-based lubrications with nanoparticles as additives. The underlying mechanisms of controlling size, shape, orientation, and density of nanoparticles for thin films, water- and oil-based lubrications will be revealed and thus making possible development and manufacturing optimization of tailor-mad and functional-materials with significantly enhanced lubrication properties.

 

8.研究成果 KPI

 

績效指標

單位

102 年
(1~3 月)

102 年
(4-6 月)

102 年
(7~9 月)

102 年 (10~12 月)

102 年
合計
論文發表 篇數

 

13

 

 

13
博碩士培育 人數 18

 

 

 

18
專利獲得 件數 1

 

 

 

1

 

技術移轉

件數

 

 

 

 

0
簽約數(千元)

 

 

 

 

0
促進廠商投資 投資額(千元)

 

 

 

 

0